Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Michael Bolte ${ }^{\mathbf{a} *}$ and

 Peyman Sakhaii ${ }^{\text {b }}$${ }^{\mathrm{a}}$ Institut für Anorganische Chemie, J. W. Goethe-Universität Frankfurt, Marie-CurieStraße 11, 60439 Frankfurt/Main, Germany, and ${ }^{\mathbf{b}}$ Institut für Organische Chemie, J. W. Goethe-Universität Frankfurt, Marie-CurieStraße 11, 60439 Frankfurt/Main, Germany

Correspondence e-mail:
bolte@chemie.uni-frankfurt.de

Key indicators

Single-crystal X-ray study
$T=173 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.003 \AA$
R factor $=0.060$
$w R$ factor $=0.134$
Data-to-parameter ratio $=17.5$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2004 International Union of Crystallography Printed in Great Britain - all rights reserved

25,27-Bis(benzyloxy)-26,28-dihydroxycalix[4]arene

The title compound, $\mathrm{C}_{42} \mathrm{H}_{36} \mathrm{O}_{4}$, belongs to the class of calix[4]arenes. It assumes a cone conformation. The hydroxy groups form intramolecular hydrogen bonds to the ether O atoms.

Comment

Calixarenes are enjoying considerable interest in the field of supramolecular chemistry because their derivatives can form inclusion complexes with cations or with neutral molecules (Gutsche, 1989; Vicens \& Böhmer, 1991).

(I)

The molecular structure of the title compound, (I), is shown in Fig. 1. The calix[4]arene assumes a conformation with approximate C_{2} symmetry in which the C atoms of the methylene bridges are nearly coplanar (average deviation from the mean plane $=0.123 \AA$). All four residues (the two hydroxy groups and the two benzyloxy groups) are on the same side of this plane. The aromatic rings of the calix[4]arene form a cone. The interplanar angles of the single aromatic rings with the above-defined mean plane are 72.82 (6), 40.49 (7), $71.02(5)$ and $38.76(5)^{\circ}$ for the rings $\mathrm{C} 11-\mathrm{C} 16$, C21-C26, C31-C36 and C41-C46, respectively. The torsion angles around the $\mathrm{Ar}-\mathrm{CH}_{2}$ bonds, which may always be used to give an unambiguous description of the molecular conformation (Ugozzoli \& Andreetti, 1992), are given in Table 1. The molecular conformation is stabilized by two intramolecular hydrogen bonds from the hydroxyl groups to the ether O atoms.

Experimental

The title compound, (I), was synthesized according to the procedure described by Casnati et al. (1991). Yellow crystals were grown from a methanol/dichloromethane solution.

Crystal data

$\mathrm{C}_{42} \mathrm{H}_{36} \mathrm{O}_{4}$
$M_{r}=604.71$
Triclinic, $P \overline{1}$
$a=10.3942(8) \AA$
$b=12.501(1) \AA$
$c=14.348(1) \AA$
$\alpha=74.028(4){ }^{\circ}$
$\beta=73.954(4)$
$\gamma=65.501(5)^{\circ}$
$V=1602.7(2) \AA^{\circ}$

$$
\begin{aligned}
& Z=2 \\
& D_{x}=1.253 \mathrm{Mg} \mathrm{~m}^{-3}
\end{aligned}
$$

Mo $K \alpha$ radiation
Cell parameters from 503 reflections
$\theta=1-25^{\circ}$
$\mu=0.08 \mathrm{~mm}^{-1}$
$T=173$ (2) K
Block, yellow
$0.43 \times 0.28 \times 0.22 \mathrm{~mm}$
Data collection
Siemens SMART CCD
4900 reflections with $I>2 \sigma(I)$
diffractometer

ω scans

Absorption correction: none
30084 measured reflections
7409 independent reflections

$$
R_{\mathrm{int}}=0.042
$$

$\theta_{\text {max }}=29.0^{\circ}$
$h=-13 \rightarrow 12$
$k=-16 \rightarrow 16$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.060$
$w R\left(F^{2}\right)=0.134$
$S=1.05$
7409 reflections
424 parameters
H atoms treated by a mixture of independent and constrained refinement

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.0448 P)^{2}\right. \\
& \quad+0.7201 P] \\
& \quad \text { where } P=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }<0.001 \\
& \Delta \rho_{\max }=0.47 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\min }=-0.18 \mathrm{e} \AA^{-3} \\
& \text { Extinction correction: } \text { SHELXL97 } \\
& \text { Extinction coefficient: } 0.0109(13)
\end{aligned}
$$

Table 1
Selected geometric parameters ($\left({ }^{\circ},{ }^{\circ}\right)$.

C12-O51	$1.399(2)$	C42-O42	$1.365(2)$
C22-O22	$1.360(2)$	O51-C51	$1.441(2)$
C32-O61	$1.404(2)$	O61-C61	$1.448(2)$
C12-O51-C51	$113.06(14)$	C32-O61-C61	$112.10(14)$
C43-C1-C11-C12	$-98.5(2)$	C23-C3-C31-C32	$-96.8(2)$
C21-C2-C13-C12	$108.9(2)$	C41-C4-C33-C32	$106.9(2)$
C13-C2-C21-C22	$-81.5(2)$	C33-C4-C41-C42	$-80.2(2)$
C31-C3-C23-C22	$72.0(2)$	C11-C1-C43-C42	$72.0(3)$

Table 2
Hydrogen-bonding geometry ($\AA{ }^{\circ}{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
O22-H22 \cdots O61	$0.86(3)$	$1.87(3)$	$2.7179(19)$	$170(2)$
O42-H42 O 51	$0.88(3)$	$1.91(3)$	$2.768(2)$	$162(2)$

H atoms bonded to C atoms were refined with fixed individual displacement parameters $\left[U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})\right]$ using a riding model, with $\mathrm{C}-\mathrm{H}=0.95$ and $0.99 \AA$ for aromatic and methylene H atoms, respectively. H atoms bonded to O atoms were refined isotropically.

Figure 1
Perspective view of the title compound, with the atom numbering; displacement ellipsoids are drawn at the 50% probability level. H atoms bonded to C atoms have been omitted for clarity. Hydrogen bonds are shown as dashed lines.

Data collection: SMART (Siemens, 1995); cell refinement: SMART; data reduction: SAINT (Siemens, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: XP in SHELXTL-Plus (Sheldrick, 1991); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 1990).

References

Casnati, A., Arduini, A., Ghidini, E., Pochini, A. \& Ungaro. R. (1991). Tetrahedron, 47, 2221-2228.
Gutsche, C. D. (1989). In Calixarenes, Monographs in Supramolecular Chemistry, Vol. 1, edited by J. F. Stoddart. London: The Royal Society of Chemistry.
Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.
Sheldrick, G. M. (1991). SHELXTL-Plus. Release 4.1. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.
Siemens (1995). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
Spek, A. L. (1990). Acta Cryst. A46, C-34.
Ugozzoli, F. \& Andreetti, G. D. (1992). J. Incl. Phenom. Mol. Recogn. Chem. 13, 337-348.
Vicens, J. \& Böhmer, V. (1991). In Calixarenes: A Versatile Class of Macrocyclic Compounds. Dordrecht: Kluwer Academic Publishers.

